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Note 

The Iterative Calculation of a Few of 

the Lowest Eigenvalues and Corresponding Eigenvectors of 

Large Real-Symmetric Matrices 

I. INTRODUCTION 

Large-scale configuration interaction (CI) calculations of electronic wave- 
functions require the construction of a few eigenvalues and eigenvectors of large, 
sparse, real-symmetric matrices. The root-shifting optimal-relaxation (MOR) 
procedure developed by Shavitt, Bender, Pipano, and Hosteny [l] is probably 
the most widely used algorithm. Their scheme has several disadvantages, however. 
It requires the calculation of CJ A,c, for one value of lat a time; it has convergence 
difficulties for nearly degenerate eigenvalues; it requires a large amount of central 
memory to find several eigenvectors; and it must always find all eigenvalues 
below the one desired. 

There are several different viewpoints from which one can show that the correc- 
tion to the eigenvector at each step in the MOR procedure is reasonable. If A is 
the matrix and c is some vector, then the Rayleigh quotient of the scalar products, 

P(C) = Cc, AMc, 4, 0) 

is a minimum at the vector corresponding to the lowest eigenvalue. Further, it 
has a saddle point at every eigenvector of A. If one component of the vector c, 
say cI, is varied by an amount ar, holding all other components constant, the 
optimum choice for 6, from 

aPI% /c,+al = 0 (4 

is simply 

61 = (P - fwlql, (3) 

where q = (A - pl)c and p is evaluated at c + 6& (where &I is a unit vector). 
Cooper [2], Nesbet [3], and Shavitt [4] have developed algorithms for the lowest 
eigenvalue using this formula for 6, with p approximated by p(c). Fadeev and 
Fadeeva [5] have shown how 6, and p(c + 6,&) can be found exactly. Bender 
and Davidson [6, 71 have generalized this further to allow a few of the c1 to be 
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varied simultaneously. Shavitt et al. [l] have further modified (3) to allow higher 
roots to be found by shifting the lower ones. 

A second derivation of (3) can be obtained from an expansion of p in a Taylor’s 
series to second order in S, 

P(C + 6) - f(c) + (6, VP) + S(S, K% (4) 

where 

wac, le = (VP), = 2dk 4, (5) 

&J = & 1 = {%4L7 - p&J] - 4[qJcJ + cIqJl/k c)>/(c, ‘$ (6) 
I J c 

If p in (4) is minimized with respect to one 6, holding all the rest fixed at zero, 
Eq. (3) is obtained. The choice of 5 which minimizes p when all components are 
varied simultaneously is more difficult to derive because all derivatives of p in 
the direction c are identically zero. If 6 is varied in directions orthogonal to c, 
a modified Newton-Raphson equation is obtained; 

c + S w (pl - A)-l c/(c, (pl - A)-l c). (7) 

It will be noticed that, apart from normalization, this is the inverse-iteration 
prescription for computing the eigenvector. Now (7) may be written as 

(pl - A)(c + 5) m EC, (8) 

where 

EMP-A, 

and h is the exact eigenvalue. This may be rewritten as 

(9) 

(P - &I) 61 - qI + c -4~8~ + ECI . 
J+I 

(10) 

Neglect of 6 and E on the right-hand side of (10) leads to (3) again. In most cases, 
however, even though the l cI are negligible, the AIJ6, are comparable to the qI . 
Consequently, unless the A,/@ - A,) are unusually small, 6, = q,/(p - A,) is 
not a very good approximation to the solution to (8). A Gauss-Seidel iterative 
solution to (10) in the form 

(p - &)@jn+l) - a?)) = [(A - pl)(c + @))], + l CI (11) 
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will in fact diverge unless the norm of the matrix D-lF satisfies 

II D-lF II -==I 1, (12) 

where 

DIJ = hJ(p - AI,)> (13) 

and 

FIJ = AIJ(~ - ‘%J>. (14) 

Condition (12) does not seem to be obeyed by most matrices encountered in CI 
calculations. Even though use of Eq. (3) to change the 6, sequentially is a stable 
method for finding the lowest eigenvalue, simultaneous change of all the c1 by 
qJ(p - A,,) usually does not converge. Thus, the seemingly small distinction 
between simultaneous or sequential relaxation of the c1 often makes the difference 
between divergence or convergence. Even in the sequential case, large A,] will 
slow convergence, and direct convergence on higher eigenvalues generally is not 
possible. In the next section a new method, based on simultaneous variation of 
the cI by q,/(p - AII), will be presented which leads to stable monotonic conver- 
gence for higher eigenvalues. 

The principal alternatives to the method of optimal relaxation are the gradient 
and power methods. Since the gradient of p is 

VP = WC - pMc, 4, (15) 

moving along the line c + ~yVp is equivalent to moving along c + olAc. Hence, 
the gradient method of Hestenes and Karush [8, 91 is equivalent to iteratively 
choosing c(k+l) = c(k) + OlkAC(k) . Because Vp and S in (3) are quite different 
(unless K is proportional to a unit matrix), the gradient method can be expected 
to give poor convergence in general. This problem is closely related to the well- 
known difficulties of the gradient method under changes of the scale of the inde- 
pendent variables. The direct power method based on the fact that Akc converges 
to the dominant eigenvector is likewise slowly convergent for matrices arising 
in CI calculations because the dominant eigenvalues tend to be close together in 
magnitude. 

The Lanczos method [lo] is a slight improvement on these latter methods. The 
Lanczos method (although usually expressed differently) is equivalent to 

C(k) = c(O) + ; 4k)vp(C(i-l)), (16) 
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and the a~:“’ are recomputed variationally after each Vp is added. This is also 
equivalent to (with a different value of CX~“‘) 

c(k) = C + i c$=‘Akc. 
i-1 

(17) 

Thus, the Lanczos method is essentially a bordering technique which iteratively 
expands in the sequence of vectors Akc. Because of its relation to the gradient 
expansion (16), better convergence can be expected than with an iteratively 
bordered expansion in the set &k . As can be seen from the previous discussion 
of Eq. (3), this particular choice of expansion vectors is still not the best for 
optimum convergence. Lanczos has shown, however, that this particular choice 
does lead to the elegant simplification that the matrix from which the 01’s are 
calculated is tridiagonal. 

II. COMPROMISE METHOD 

Equations (3, 16) are suggestive of a new method. Let 

c(k) = c(O) + ; $‘Pi, 
i=l 

(18) 

where the components of the vector Si are found from the components of the 
vector qi by 

‘fJ;.i+l = (P(%d - AJJ)-1 4J.i 9 

qi = (A - p(w) 1) c(i) . 

(19 

P-4 

Since expansion in an orthonormal basis is simpler, the equivalent form 

k 

c(k) = c c$)bi, 
i=O 

bo = co , 

bi = Wll di II, 

di = [ff (1 - bjbj=)] & , 
j=O 

II di II = (4, diP2 

(21) 

(22) 

(23) 

(24) 

is preferable. While this method does not lead to the elegance of the Lanczos 
method, it offers a better chance for rapid convergence. Like the Lanczos method, 
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it generates k approximate eigenvalues at each step, so it offers a prospect for 
generating higher eigenvalues. In fact, if the qi are based on approximate eigen- 
vectors associated with higher eigenvalues, selective convergence on excited states 
is conceivable. 

A. 

B. 

C. 

D. 

E. 

F. 

G. 

H. 

I. 

III. COMPUTATIONAL DETAILS 

If the kth eigenvalue is wanted, select a zeroth-order orthonormal subspace 
b, , b, ,..., br (I > k) spanning the dominant components of the first k 
eigenvalues. Form and save Abl , Ab, ,..., Abl and (hi , Abj) = Xii , 
1 < i < j < 1. Diagonalize A using a standard method for small matrices. 
Select the kth eigenvalue hi” and the corresponding eigenvector c$‘. 

Form qM = CE, c@(Ab,) - CE, a$l\jE”‘bi . Here, M is the dimension 
of A” used to find a and A. 

Form I/ qM 11 and check convergence by the Weinstein lower bound for- 
mula [l 11, Xi”,“’ - 11 qM II < h, < XLMf”‘. This is a pessimistic convergence 
test since I/ qM I] --+ 0 at about the same rate as II A - h, /III c(M) - cexact II. 
The h(e”) converges to X, much more rapidly. In cases where II A - h, (I is 
very different from unity, a test on &yL is better than a test on ]I qM I]. 

Form &,(,+,+1) = (hL”) - A,,)-1 q1.M ) I = I,...) iv. 

Form d(M+l) = KIT, (1 - b&31 StM+1) . 
Form b(M+l) = dtM+l)/ll 4M+1) II. 
Form Ab(M+l) . 

Form c?~,~+~ = (bd , Ab(M+l)), i = I,..., M + 1. 

Diagonalize ii and return to step B with ~~!“j”’ and hi”+l’. 

If several eigenvalues are wanted, the first I of the cz1 aijbi at the end of finding 
one root often provides a good starting set for the next root. The slowest step in 
this procedure for large matrices is the formation of Ab. All of the other steps 
together require negligible time. For this reason, this method requires the same 
time per iteration as the Lanczos method, the gradient method, and the relaxation 
method. Since the bi and Abd are numerous and large in dimension, they must be 
kept in auxiliary storage. Only central memory storage space for two vectors is 
ever required. If M becomes inconveniently large, the current set of CE, afib, , 
j = l,..., Z, can be taken as a new initial set and the calculation restarted with 
step (A). 

581/17/I-7 
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IV. TEST RESULTS 

This method has now been applied to a few matrices with the convergence 
criteria 11 q Ij < 1O-6. Among the matrices used were some for the LiF molecule 
from the work of Kahn, et al. [12]. These matrices were of dimension -1100 
and had nearly degenerate third and fourth roots as well as fairly close first and 
second roots. In one example, the actual first and second roots were reversed in 
order from the results of the zeroth-order subspace. In several cases the MOR 
procedure had failed to converge for the third root after hundreds of iterations. 
In every case convergence was reached with the present method after only 
l&20 iterations per eigenvalue (51 iterations total for 4 eigenvalues). Near 
degeneracy did not seem to affect the convergence rate. Since the time per iteration 
was the same as the MOR procedure, the overall speed was much faster because 
of the reduced number of iterations. For the lowest eigenvalue alone, the MOR 
algorithm remained superior requiring about three fewer iterations for conver- 
gence. One comparison with the Lanczos method was made using a matrix of 
dimension 372. This new method converged 11 q )I to less than 1O-6 in ten iterations, 
while the Lanczos method had only reached 11 q I( = 2 x 1O-2 after 28 iterations. 

V. CONCLUSIONS 

In the opening paragraph four difficulties with the MOR procedure were 
mentioned. By direct calculation, it has been verified that the convergence diffi- 
culties, at least in these examples, do not occur in this new method. There is no 
reason why this method would not work even for exactly degenerate roots. Also, 
this method requires core storage for only two vectors at once, regardless of the 
number of roots found. In fact, the method could easily be adapted to block 
matrix operations which would require very little core for a few eigenvectors of 
matrices of dimension lo6 or larger. If desired, this new method can also be used 
to find higher eigenvalues directly without finding accurate values for lower 
eigenvalues. 

Finally, the new method requires only the matrix operation Ab and not the 
sequential calculation of (Ab), . For very large CI calculations, this may offer 
some advantages. In CI calculations the eigenvalue problem for a N x N matrix, 

can be rewritten as 
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where the hijkl are relatively expensive numbers to obtain and the rijkl,, , while 
very numerous, are relatively simple to compute. For very large matrices for 
which N2 > K4 > 108, it becomes impractical to actually form the A,, . In this 
case the problem can be reformulated as 

The r supermatrix is reconstructed during each iteration while forming Ab. In 
this event, a method which does not require the formation of the (Ab), in any 
particular order has obvious advantages. Calculations based on (18) using 
Rayleigh-Schrodinger perturbation theory have recently been reported by 
Roos [13], and calculations using the Lanczos method have been reported by 
Hausman, Bender, and Bloom [14]. The method suggested here should improve 
the convergence of these calculations. 

ACKNOWLEDGMENT 

The author is indebted to the Guggenheim Foundation for a fellowship which supported this 
work. Also, Battelle Memorial Institute provided computer resources and other support. The 
author also thanks I. Shavitt and L. Kahn for use of their matrices and several helpful conver- 
sations. 

The author is on leave from the University of Washington, Seattle, Washington. 

REFJZRENCES 

1. I. SIIAVI~~, C. F. BENDER, A. PIPANO, AND R. P. HOSTENY, J. Computational Phys. 11 (1973), 
90. 

2. J. L. B. COOPER, Quart. Appl. M&h. 6 (1948), 179. 
3. R. K. NESBET, J. Chem. Phys. 43 (1965), 311. 
4. I. SHAVITT, J. Computational Phys. 6 (1970), 124. 
5. D. K. FADEEV AND V. N. FADEEVA, “Computational Methods of Linear Algebra” (English 

Translation), Section 61, Freeman, San Francisco, CA, 1963. 
6. C. F. BENDER, Ph.D. Thesis, University of Washington, Seattle, WA, 1968. 
7. C. F. BENDER AND E. R. DAVIDSON, Phys. Rev. 183 (1969), 23. 
8. W. KARusH, Pacific J. Math. 1 (1951), 233. 
9. M. R. HESTENES, in “Simultaneous Linear Equations and the Determination of Eigenvalues” 

(L. J. Page and 0. Taussky, Eds.), Chap. 12, National Bureau of Standards Applied Mathe- 
matics Series, No. 29, U. S. Government Printing Office, Washington, DC, 1953. 

10. C. LANCZOS, J. Res. Nat. Bur. Stand. 45 (1950), 255. 
11. D. H. WEINSTEIN, Proc. Nut. Acad. Sci 20 (1934), 529. 



94 ERNEST R. DAVIDSON 

12. L. R. KAHN, P. J. HAY, AND I. SHAVITT, J. Chem. Phys. 61 (1974), 3530. 
13. B. Roos, Chem. Phys. L&t. 15 (1972), 153. 
14. R. F. HAUSMAN, C. F. BENDER, AND S. D. BLOOM, private communication. 

RECENED: August 26, 1974 
ERNEST R. DAVIDSON 

Battelle Memorial Institute 
505 King Avenue 

Columbus, Ohio 43220 


